

Control Modes

• Torque, velocity, position

Command Interface

- MACRO
- ±10V

Communications

- MACRO
- RS-232

Feedback

- Digital Incremental Quad A/B encoder
- Analog Incremental Sin/Cos encoder
- Digital Halls

I/O

- Digital inputs: 10 high speed, 1 motor temp
- Digital outputs: 3 MOSFET, 1 High-speed CMOS

Dimensions: mm [in]

• 196 x 99 x 30 [7.73 x 3.9 x 1.17]

Model	Ip	Ic	Vdc
AMP-055-18	18	6	55
AMP-090-09	9	3	90
AMP-090-18	18	6	90
AMP-090-36	36	12	90
AMP-180-09	9	3	180
AMP-180-18	18	6	180

DESCRIPTION

Accelnet MACRO is a high-performance, DC powered drive for position, velocity, and torque control of brushless and brush motors via MACRO (Motion And Control Ring Optical). MACRO is a high bandwidth, non-proprietary fiber optic or wired field bus protocol for machine control networks which is based upon 100BASEFX (FDDI) and 100BASETX (Ethernet) hardware technologies. Connections to a MACRO ring are via SC-type fiber optic connectors. The drive operates in Torque Drive, Velocity Drive, and Position Drive modes. MACRO address selection is via two rotary switches for Master and Node addresses.

Drive commissioning is fast and simple using CME 2^{TM} software operating under Windows[®] and communicating with Accelnet MACRO via RS-232.

Motor feedback is either quad A/B digital or sin/cos analog incremental encoders. A multi-mode encoder port works as an output, buffering the quad A/B signals for connection to an external controller, or as an input for a secondary encoder on the load for a dual position-loop configuration. When using an analog encoder, the multi-mode port outputs interpolated quad A/B signals with programmable resolution (counts per sin/cos cycle)

There are 10 high speed digital inputs and 1 digital input for a motor over-temperature switch. Input [IN1] is dedicated to the drive enable function while [IN2 \sim 10] are programmable.

Inputs [IN1~10] have 1 µs RC filters for high speed operation and accept inputs from +5~24 Vdc. Each of these inputs has a 10 k Ω resistor that is independently programmable to pull up to +5 Vdc, or to pull down to ground. The Motemp input [IN11] has a fixed 4.99 k Ω pull up resistor to +5 Vdc for compatibility with PTC sensing resistors.

Digital outputs [OUT1~3] are open-collector MOSFET types with 1 k Ω pull up resistors to +5 Vdc. An isolating diode in each enables operation with current-sourcing opto-isolated inputs of PLC's by eliminating leakage currents back into the drive's +5 Vdc supply when the outputs are off. [OUT1] has an additional snubber diode that connects to the HV_AUX terminal. This, plus a 1 Adc current capability enables it to drive motor brakes which are inductive loads. [OUT4] is a high-speed CMOS output.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An HV_AUX input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

In addition to the MACRO interface, torque, velocity, and position mode operation is also supported via an analog input with a ± 10 Vdc range.

Copley Controls		D	IGITAL SE	RVO DRIV	E for BRU	SHLESS or	BRUSH MOTORS
Corp.		elne	et M	ACR	0		
GENERAL SPECIFICATION							RoHS
						AMP-180-18	$^{\circ}C$, $+HV = HV_{max}$
OUTPUT POWER Peak Current Peak time	18 (12.7) 1	9 (6.9) 1	18 (12.7) 1	36 (26.5) 1	9 (6.4) 1	18 (12.7) 1	Adc (Arms, sinusoidal), ±5% Sec
Continuous current Output resistance Maximum Output Voltage	6 (4.2) 0.075	3 (2.1) 0.075	6 (4.2) 0.075	12 (8.5) 0.075 HV*0.97 - Roi	3 (2.1) 0.075	6 (4.2) 0.075	Adc (Arms, sinusoidal) Rout (Ω)
INPUT POWER HVmin~HVmax Ipeak Icont	20 - 55 20 6.7	20 - 90 10 3.3	20 - 90 20 6.7	20 - 90 40 13.3	20 - 180 10 3.3	20 - 180 20 6.7	+Vdc, Transformer-isolated Adc (1 sec) peak Adc continuous
HVAUX	6.7			500 mAdc max		6.7	Add continuous
PWM OUTPUTS Type PWM ripple frequency	3-phas	e MOSFET in	verter, 16 kHz	center-weighte 32 kHz	ed PWM, space	-vector modula	tion
COMMAND INPUTS	Terrer	a duiva vala	situs aluissa saasi	tion duive vie N			
Type Connectors Fiber medium	Torqu Duple 62.5	e, velocity, p x SC optical micron Multi-	osition via ±1 fiber receptacl Mode Glass Fi) Vdc analog ir e ber per ISO/IE	C 9314-3 & AN	SI X3.166-199	0
Wavelength Data Format Data	1300 MACF	nm´ RO	d to as "62.5/" rofile DSP-402		e" glass fiber c	able	
Address Selection Address range Analog	Dual 0x0 t	16-position r o 0xF hex (0-	otary switches ~15 decimal) f	for Master and or Master & No	d Node address ode put impedance		
DIGITAL CONTROL Digital Control Loops Sampling rate (time) Commutation Modulation Bandwidths HV Compensation Minimum load inductance	Curre Sinus Cente Curre Chan	ent loop: 16 k oidal, field-or er-weighted P ent loop: 2.5	Hz (62.5 μs) riented control WM with spac kHz typical, ba	for brushless e-vector modu	on loops: 4 kH: motors lation ary with tuning	z (250 µs) & load inducta	nce
DIGITAL INPUTS Number [IN1~10] [IN11]	HS: 1 V ₇ + = GP: N) µs RC filtere = 3.15 Vdc m lotor over-te	ed, CMOS, +5 ax, V = 1.13	Vdc min, V _H = tch, 33 µs RC f	ammable pull u	up/down on eac ixed pull up to	
DIGITAL OUTPUTS Number [OUT1] [OUT2,3]	3 GP GP: N GP: N Diode are o	(General Pur I-channel MO I-channel MO e in series wit ff and pulled	pose), 1 HS (H SFET, 1 Adc, H SFET, 100 mA h pull up resis up to voltages	ligh-Speed), n -30 Vdc, with 1 dc, +30 Vdc, w tor prevents cu	L kΩ pull-up re vith 1 kΩ pull-u urrent flow into	sistor to +5 Vd p resistor to +1 +5 Vdc supply	
MULTI-MODE ENCODER PORT As Secondary Encoder Input							across complementary inputs
As Emulated Encoder Output	Quad from	rature encode analog sin/co	er emulation work encoders. 1	rith programma 3M counts/sec,	post-quadratu	to 4096 lines (ire (4.5 M lines,	65,536 counts) per rev /sec), RS-422 line driver
As Buffered Encoder Output						M counts/sec, ; RS-422 line d	post-quadrature (5 M lines/sec) river
RS-232 PORT Signals Mode Protocol	Full-c		erial port for d		tyle modular c control, 9,600	onnector. to 115,200 Ba	ud
MOTOR CONNECTIONS Phase U, V, W Hall U, V, W Encoder Power Digital Incremental Enco Analog Incremental Enco Motemp [IN11]	Digita +5 V der Quad 5 MH 26LS oder Sin/c Moto	al Hall signals dc @ 250 mA rature signals z maximum l 32 differentia os format (sin	; single-ended maximum cons, (A, /A, B, /E ine frequency I line receiver n+, sin-, cos+ ature sensor ir	mbined current , X, /X), differ (20 M counts/s with 121 Ω ter , cos-), differen	t from J4-22 ar ential (X, /X In sec) minating resist	nd J3-3 dex signals not cor between cor beak, ServoTub	ors, or DC brush motors required) nplementary inputs e motor compatible

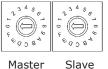
RoHS

STATUS INDICATORS Amp Status MACRO Status	Bicolor LED, drive status indicated by color, and blinking or non-blinking condition Bicolor LED, status of MACRO bus indicated by color and blink codes to MACRO Indicator Specification V0.91
PROTECTIONS	
HV Overvoltage HV Undervoltage Drive over temperature Short circuits I ² T Current limiting Motor over temperature Feedback Loss	+HV > HV maxDrive outputs turn off until +HV < +20 Vdc
MECHANICAL & ENVIRONMENTAL	
Size Weight Ambient temperature Humidity Vibration Contaminants Environment Cooling	7.73 in (196.3 mm) X 3.90 in (99.1 mm) X 1.17 in (29.7 mm) 1.0 lb (0.45 kg) 0 to +45°C operating, -40 to +85°C storage 0 to 95%, non-condensing <tbd> Pollution degree 2 IEC68-2: 1990 Heat sink and/or forced air cooling required for continuous power output</tbd>

CME 2[™] SOFTWARE

Drive setup is fast and easy using CME 2TM software. All of the operations needed to configure the drive are accessible through this powerful and intuitive program. Auto-phasing of brushless motor Hall sensors and phase wires eliminates "wire and try". Connections are made once and CME 2TM does the rest thereafter. Encoder wire swapping to establish the direction of positive motion is eliminated.

Motor data can be saved as .CCM files. Drive data is saved as .CCX files that contain all drive settings plus motor data. This eases system management as files can be cross-referenced to drives. Once a drive configuration has been completed systems can be replicated easily with the same setup and performance.


MACRO ADDRESS

Two 16-position hexadecimal rotary switches set the master and slave node addresses. A MACRO ring supports up to sixteen masters and 14 physical slaves per master, eight of which are for motion controls and six are for I/O. The chart below shows the available slave addresses for *Accelnet MACRO* (0~7). Slave addresses ($E \sim F$) are reserved.

Switch

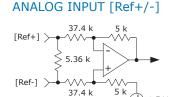
MACRO Address Switch Decimal Values

J6: MACRO PORT Duplex type SC

optical fiber connector

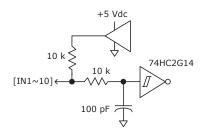
S2

S1


OUT IN

ANALOG INPUT

The differential configuration of the analog input has a ± 10 Vdc range and is the alternate command input. One of the input terminals connects to a voltage source in the controller and the other connects to signal ground at the voltage source. Shielded, twisted-pair wires are the best choice for connecting the input to the voltage source.

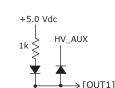


RoHS

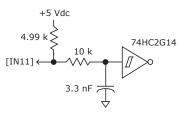
DIGITAL INPUTS

These are high-speed (HS) non-isolated types with pull-up resistors to +5 Vdc and 1 μ s RC filters when driven by active sources. The active level is programmable on each input. Input [IN1] is dedicated to the drive enable function. The remaining inputs [IN2~IN10] have programmable functions. Input [IN11] is set up for the motor overtemperature function and connects to the feedback connector J3. If not used as the Motemp input it can be programmed for other functions. All of the inputs can operate from +5 to +24 Vdc sources.

HS Inputs [IN1~10]



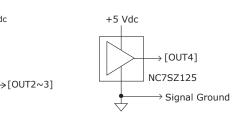
DIGITAL OUTPUTS


The table below shows the features of the four digital outputs. Programmable functions include:

- Drive fault indicator
- Motor brake
- PWM sync
- Program control
- Custom event

GP [OUT1] 1 Adc, 30 Vdc max

MOTEMP [IN11]



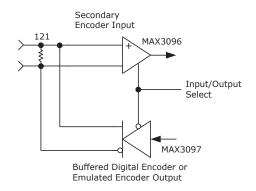
GP [OUT2~3] 100 mAdc, 30 Vdc max

+5.0 Vdc

1k <

HS [OUT4] ±20 mAdc 5 Vdc max

MULTI-MODE ENCODER PORT


Depending on drive set-up, this port functions either as an input or output for differential encoder signals.

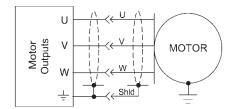
For dual-loop position-mode operation that employs a primary encoder on the motor, and a secondary encoder on the load, the port works as an input receiving the secondary encoder's quad A/B/X signals.

For stand-alone operation with an external motion controller, the signals from the digital encoder on the motor are buffered and made available at the control signal connector for transmission to the controller. This eliminates split-wired motor cables with dual connectors that take the encoder signals to both drive and controller.

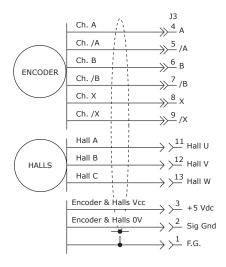
When used with ServoTube motors, or other motors using analog encoders with sin/cos signal format, the drive interpolates the sin/cos signals to a resolution that is programmable. The incremental changes in position are then converted to digital quad A/B/X format for use by the external motion controller.

FUNCTIONAL DIAGRAM OF ONE CHANNEL

MOTOR CONNECTIONS

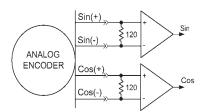

Motor connections consist of: phases, Halls, encoder, and thermal sensor. The phase connections carry the drive output currents that drive the motor to produce motion. The Hall signals are three digital signals that give absolute position feedback within an electrical commutation cycle. The encoder signals give incremental position feedback and are used for velocity and position modes, as well as sinusoidal commutation. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor.

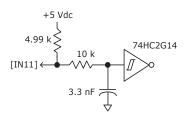
PHASE CONNECTIONS


The drive output is a three-phase PWM inverter that converts the DC bus voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive HV ground terminal (J2-1) for best results. When driving a DC motor, the W output is unused and the motor connects between the U & V outputs.

DIGITAL QUAD A/B ENCODER AND HALLS

Encoders with differential line-driver outputs provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The Hall signals are single ended and provide commutation information. After start up, the drive operates in trapezoidal mode until one of the Halls changes state at which point the mode switches to sinusoidal. Because the Hall feedback is absolute within one electrical commutation cycle they can also be used to shutdown the drive in case the incremental feedback from the A/B signals either fails or is corrupted by noise. When this happens the apparent position will shift from one Hall state to another and this can be programmed to generate a fault condition in the drive.




RoH

ANALOG SIN/COS INCREMENTAL ENCODER

The sin/cos inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors.

TEMPERATURE SENSOR

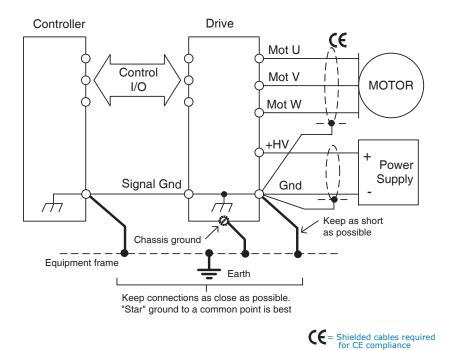
The MOTEMP input connects to J3-14 for use with a motor overtemperature switch. The switch or sensor must be grounded so that the input changes from LO to HI when the switch opens. The active level is programmable for use with switches that either open or close when the motor is overheating.

Accelnet MACRO

GROUNDING CONSIDERATIONS

Power and control circuits in *Accelnet MACRO* share a common circuit-ground (HV_COM on J1-1, and Signal Ground on J3-2 & 15 and J4-2 & 23). Circuits that are referenced to Signal Ground are the analog Reference input, buffered encoder outputs, motor encoder and Hall signals, and the PWM outputs. For this reason, drive Signal Gnd terminals should connect to the users' common ground system so that signals between drive and controller are at the same common potential, and to minimize noise. The system ground should, in turn, connect to an earthing conductor at some point so that the whole system is referenced to "earth". The MACRO ports are transformer-isolated from the drive circuits.

Because current flow through conductors produces voltage-drops across them, it is best to connect the drive HV Return to system earth, or circuit-common through the shortest path, and to leave the power-supply floating. In this way, the power supply (-) terminal connects to ground at the drive HV Return terminals, but the voltage drops across the cables will not appear at the drive ground, but at the power supply negative terminal where they will have less effect.

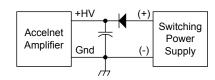

Motor phase currents are balanced, but currents can flow between the PWM outputs, and the motor cable shield. To minimize the effects of these currents on nearby circuits, the cable shield should connect to Frame Gnd (J2-1).

The drive frame (heatplate) does not connect to any drive circuits. Connections to the frame are provided on connectors J2-1, J3-1, J4-1. Cables to these connectors should be shielded for CE compliance, and the shields should connect to these terminals. When installed, the drive case should connect to the system chassis. This maximizes the shielding effect of the case, and provides a path to ground for noise currents that may occur in the cable shields.

Signals from controller to drive are referenced to +5 Vdc, and other power supplies in user equipment. These power supplies should also connect to system ground and earth at some point so that they are at same potential as the drive circuits.

The final configuration should embody three current-carrying loops. First, the power supply currents flowing into and out of the drive at the +HV and HV_COM pins on J1. Second the drive outputs driving currents into and out of the motor phases, and motor shield currents circulating between the U, V, and W outputs and Gnd. And, lastly, logic and signal currents connected to the drive control inputs and outputs.

For CE compliance and operator safety, the drive should be earthed by using external tooth lock washers under the mounting screws. These will make contact with the aluminum chassis through the anodized finish to connect the chassis to the equipment frame ground.



Accelnet MACRO operates typically from transformer-isolated, unregulated DC power supplies. These should be sized such that the maximum output voltage under high-line and no-load conditions does not exceed the drives maximum voltage rating. Power supply rating depends on the power delivered to the load by the drive. In many cases, the continuous power output of the drive is considerably higher than the actual power required by an incremental motion application.

RoH.

Operation from regulated switching power supplies is possible if a diode is placed between the power supply and drive to prevent regenerative energy from reaching the output of the supply. If this is done, there must be external capacitance between the diode and drive.

AUXILIARY HV POWER

Accelnet MACRO has an input for HV_AUX. This is a voltage that can keep the drive communications and feedback circuits active when the PWM output stage has been disabled by removing the main +HV supply. This can occur during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety. The HV_AUX input operates from any DC voltage that is within the operating voltage range of the drive and powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.

When the drive +HV voltage is greater than the HV_AUX voltage it will power the DC/ DC converter. Under these conditions the HV_AUX input will draw no current.

MOUNTING & COOLING

Accelnet MACRO has slots for mounting to panels at 0° or 90°. Cooling is by conduction from drive heatplate to mounting surface, or by convection to ambient.

A heatsink (optional) is required for the drive to deliver the rated continuous output current. Depending on the drive mounting and cooling means this may not be required.

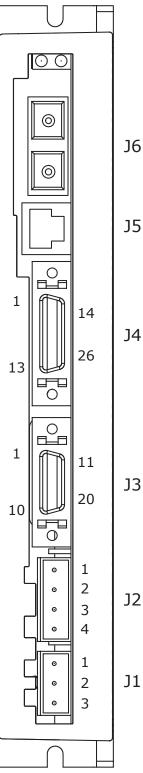
Tel: 781-828-8090

Accelnet MACRO ____

CONNECTORS & SIGNALS

J4: COM	NTROL
J4 SIGNALS	PIN
Frame Ground	1
Signal Ground	2
Enable HS [IN1]	3
HS [IN2]	4
HS [IN3]	5
HS [IN4]	6
HS [IN5]	7
HS [IN6]	8
HS [IN7]	9
HS [IN8]	10
HS [IN9]	11
HS [OUT4]	12
GP [OUT1]	13

J3: FEEDBACK


J3 SIGNALS	PIN
Frame Ground	1
Signal Ground	2
+5 Vdc @ 250 mA	3
Encoder A	4
Encoder /A	5
Encoder B	6
Encoder /B	7
Encoder X	8
Encoder /X	9
Encoder S	10

J1: POWER

J1 SIGNALS	PIN
HV_COM	1
+HV	2
HV_AUX	3

J1 CABLE CONNECTOR:

3 position 5.08 mm Euro-Style plug Copley: 57-00465-000 PCD: ELFP03210 Ria: 31249103 Weco: 121-A-111/03

J4: CONTROL

J4 SIGNALS
GP [OUT2]
GP [OUT3]
Multi-mode Encoder A
Multi-mode Encoder /A
Multi-mode Encoder B
Multi-mode Encoder /B
Multi-mode Encoder X
Multi-mode Encoder /X
+5 Vdc @ 250 mA
Signal Ground
[Ref+]
[Ref-]
GP [IN10]

J4 CABLE CONNECTOR:

RoH

Solder Cup, 26 position male, 1.27 mm pitch Cable: 26 conductor, shielded Standard with Snap locks 3M: 10126-3000 VE connector 3M: 10326-52F0-008 backshell Rugged with Screw-locks Molex: 54306-2619 connector Molex: 54331-0261 backshell

Note: Molded cable assemblies are available for J3 & J4. See p. 10 for cable colors.

J3: FEEDBACK

PIN	J3 SIGNALS			
11	Hall U			
12	Hall V			
13	Hall W			
14	Motemp [IN11]			
15	Signal Ground			
16	Analog Sin(+)			
17	Analog Sin(-)			
18	Analog Cos(+)			
19	Analog Cos(-)			
20	Encoder /S			

J2: MOTOR

J2 SIGNALS
Frame Gnd
Motor U
Motor V
Motor W

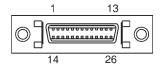
J3 CABLE CONNECTOR:

Solder Cup,20 position male, 1.27 mm pitch Cable: 20 conductor, shielded Standard with Snap locks 3M: 10120-3000VE connector 3M: 10320-52F0-008 backshell Rugged with Screw-locks Molex: 54306-2019 connector Molex: 54331-0201 backshell

J2 CABLE CONNECTOR:

4 position 5.08 mm Euro-Style plug Copley: 57-00466-000 PCD: ELFP04210 Ria: 31249104 Weco: 121-A-111/04

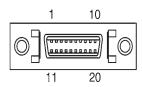
Note: 1. The total +5 Vdc output current from J3-3 and J4-22 cannot exceed 250 mA.



ACCESSORY CABLE CONNECTIONS

Note: Wires are solid-color with a stripe of an alternate color. E.g. "Black / Orange" is a black wire with an orange stripe.

CONTROL CABLE (AMP-CC-10)

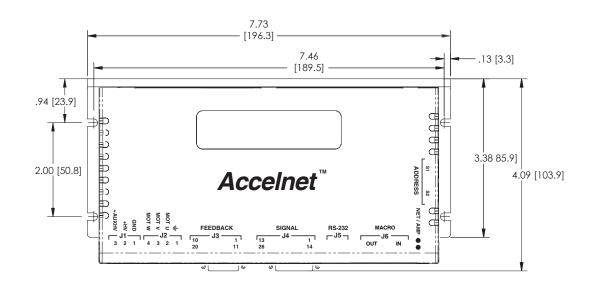

Plug assembly: Molex 52316-2611 Boot cover: Molex 52370-2610 Molded connector mates with drive J4 and has flying-lead terminations with colors shown in chart below.

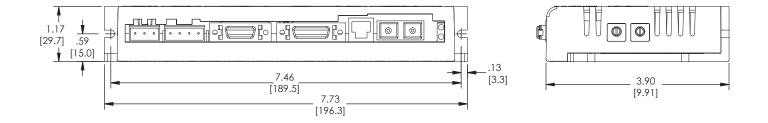
Signals	Pin	Color (Body / Stripe)	Pa	air	Color (Body / Stripe)	Pin	Signals
Frame Ground	1	White / Tan	1a	8a	White / Violet	14	GP [OUT2]
Signal Ground	2	Tan / White	1b	8b	Violet / White	15	GP [OUT3]
Enable GPI [IN1]	3	White / Brown	2a	9a	White / Gray	16	Multi-mode Encoder A
GPI [IN2]	4	Brown / White	2b	9b	Gray / White	17	Multi-mode Encoder /A
GPI [IN3]	5	White / Pink	3a	10a	Tan / Brown	18	Multi-mode Encoder B
GPI [IN4]	6	Pink / White	3b	10b	Brown / Tan	19	Multi-mode Encoder /B
GPI [IN5]	7	White / Orange	4a	11a	Tan / Pink	20	Multi-mode Encoder X
GPI [IN6]	8	Orange / White	4b	11b	Pink / Tan	21	Multi-mode Encoder /X
HS [IN7]	9	White / Yellow	5a	12a	Tan / Orange	22	+5 Vdc @ 250 mA
HS [IN8]	10	Yellow / White	5b	12b	Orange / Tan	23	Signal Ground
HS [IN9]	11	White / Green	6a	13a	Tan / Yellow	24	[Ref+]
HS [OUT4]	12	Green / White	6b	13b	Yellow / Tan	25	[Ref-]
GP [OUT1]	13	White / Blue	7a	7b	Blue / White	26	GP [IN10]

FEEDBACK CABLE (AMP-FC-10)

Plug assembly: Molex 52316-2011 Boot cover: Molex 52370-2010 Molded connector mates with drive J3 and has flying-lead terminations with colors shown in chart below.

Signals	Pin	Color (Body / Stripe)	Pa	air	Color (Body / Stripe)	Pin	Signals
Frame Ground	1	White / Tan	1a	1b	Tan / White	11	Hall U
Signal Ground	2	White / Brown	2a	7a	White / Blue	12	Hall V
+5 Vdc @ 250 mA	3	Brown / White	2b	7b	Blue / White	13	Hall W
Encoder A	4	White / Pink	3a	8a	White / Violet	14	Motemp [IN11]
Encoder /A	5	Pink / White	3b	8b	Violet / White	15	Signal Ground
Encoder B	6	White / Orange	4a	9a	White / Gray	16	Analog Sin(+)
Encoder /B	7	Orange / White	4b	9b	Gray / White	17	Analog Sin(-)
Encoder X	8	White / Yellow	5a	10a	Tan / Brown	18	Analog Cos(+)
Encoder /X	9	Yellow / White	5b	10b	Brown / Tan	19	Analog Cos(-)
Encoder S	10	White / Green	6a	6b	Green / White	20	Encoder /S


Accelnet MACRO


DIMENSIONS

NOTES

1. Dimensions shown in inches [mm].

RoHS

Weights: Drive: 0.94 lb (0.43 kg) Heatsink: 1.0 lb (0.45 kg)

Accelnet MACRO

MASTER ORDERING GUIDE

AMP-055-18	Accelnet MACRO Servo drive, 55 Vdc, 6/18 A
AMP-090-09	Accelnet MACRO Servo drive, 90 Vdc, 3/9 A
AMP-090-18	Accelnet MACRO Servo drive, 90 Vdc, 6/18 A
AMP-090-36	Accelnet MACRO Servo drive, 90 Vdc, 12/36 A
AMP-180-09	Accelnet MACRO Servo drive, 180 Vdc, 3/9 A
AMP-180-18	Accelnet MACRO Servo drive, 180 Vdc, 6/18 A

ACCESSORIES

	QTY	REF	DESCRIPTION	MANUFACTURER PART NO.
	1	J1	Plug, 3 position, 5.08 mm, female	PCD: ELFP03210, Weco: 121-A-111/03
Connector Kit Solder-Cup AMP-CK	1	J2	Plug, 4 position, 5.08 mm, female	PCD: ELFP04210, Weco: 121-A-111/04
	1	J3	20 Pin Connector, High Density, D-Sub, Solder Cup	3M: 10120-3000VE
	1		20 Pin Connector Backshell	3M: 10320-52F0-008
	1	J4	26 Pin Connector, High Density, D-Sub, Solder Cup	3M: 10126-3000VE
	1		26 Pin Connector Backshell	3M: 10326-52F0-008
	1	J1	Plug, 3 position, 5.08 mm, female	PCD: ELFP03210, Weco: 121-A-111/03
Connector Kit Cable Assy AMP-CA	1	J2	Plug, 4 position, 5.08 mm, female	PCD: ELFP04210, Weco: 121-A-111/04
	1	J3	Cable assembly, control, 10 ft (3 m)	Molex: 52316-2611, plug assy, Molex 52370-2610 boot cover
	1	J4	Cable assembly, feedback, 10 ft (3 m)	Molex: 52316-2011, plug assy, Molex 52370-2010 boot cover
AMP-CC-10		J3	Cable assembly, control, 10 ft (3 m)	Molex: 52316-2611, plug assy, Molex 52370-2610 boot cover
AMP-FC-10		J4	Cable assembly, feedback, 10 ft (3 m)	Molex: 52316-2011, plug assy, Molex 52370-2010 boot cover
SER-CK J5		J5	Serial Cable Kit: D-Sub 9 female to drive J5 connector, 6 ft (1.8 m)	
CME 2			CME 2 [™] CD (CME 2)	
Heatsink Kit AMP-HK	1		Heatsink	
	1		Thermal Material	
	A/R		Hardware	

Note: To order drive with heatsink installed at factory, add "-H" to the drive part number. E.g., AMP-090-09-H

ORDERING INSTRUCTIONS

Example: Order 1 AMP-090-18 drive with heatsink installed at factory and associated components:

Qty Item

У	Item	Remarks
	AMP-090-18-H	Accelnet MACRO servo drive
	AMP-CA	Connector Kit with molded cables for control & feedback
	SER-CK	Serial Cable Kit
	CME2	CME 2™ CD

Check out the PST power supplies for mounting and DC power: http://www.copleycontrols.com/motion/downloads/pdf/pst_psx.pdf

Note: Specifications subject to change without notice

Tel: 781-828-8090

Fax: 781-828-6547

Rev 2.02_mo 08/27/2007

Page 10 of 10